jamb 2014 physics quedquest

ALL FROM POSTUTMEADMISSION.

G OM.NG

10

1) What is the least possible error encountered when taking measurement with a meter rule?
(A) 0.1 mm

B 1.0 mm
postutmeadmission.com.ng
C 0.5 mm
(D) 0.2 mm
2) A quantity which requires magnitude and direction to be specified is

A Temperature
B Distance
C Displacement
(D) Mass

3 I Electrical potential, II Torque, III Kinetic Energy, IV Momentum. Which of the quantities listed are vectors?

A II and IV
B I and II

C I and III

D II and III

4 Which type of motion do the wheels of a moving car undergo?

A Vibratory and translational motion
B Random and translational motion
C Rotational mand oscillatory motion
(D) Translational and rotational motion
(5) A car accelerates uniformly from rest at $3 \mathrm{~ms}^{-2}$. its velocity after traveling a distance of 24 m is
(A) $12 \mathrm{~ms}^{-1}$
(B) $144 \mathrm{~ms}^{-1}$

C $72 \mathrm{~ms}^{-1}$
D $36 \mathrm{~ms}^{-1}$

6 Calculate the escape velocity of a satellite launched from the earth's surface if the radius of the earth is $6.4 \times 10^{6} \mathrm{~m}$
(A) $25.3 \mathrm{kms}^{-1}$
(B) $4.2 \mathrm{kms}^{-1}$
(C) $4.0 \mathrm{kms}^{-1}$

7 An object of weight 80 kg on earth is taken to a planet where acceleration due to gravity is one-third of its value on earth. The weight of the object on the planet is
(A) 48 N

B 12 N
C 27 N
(D) 36 N

8 One of the conditions necessary for an object to be in equilibrium when acted upon by a number of parallel forces is that the vector sum of the forces is
(A) Average

B Zero
C Negative
(D) Positive

9 What happens when three coplanar non-parallel forces are in equilibrium?

A Their lines of action are parallel.
B They are represented in magnitude only
C They are represented in direction only
(D) Their lines of action meet at a point

10 An object of mass 20 kg is released from a height of 10 m above the ground level. The kinetic energy of the object just before it hits the ground is
(A) 200 J

B 4000 J

C 2000 J

D 500 J

11 The energy in the nucleus of atoms produce heat which can be used to generate
(A) Kinetic energy

B Mechanical energy
C Electrical energy
D Potential energy

12 A machine whose efficiency is 75% is used to
lift a load of 1000 N. Calculate the effort put in to the machine if it has a Velocity ratio of 4 .

A 343.32 N

B 233.33 N
C 333.33 N
D 334.33 N

13 A wheel and an axle is used to raise a load whose weight is 800 N when an effort of 250 N is applied. If the radii of the wheel and axle are 800 mm and 200 mm respectively, the efficiency of the machine is

A 90%
B 80%
C 85%
(D) 87%
(14) A force of $500 \mathrm{~N}^{1}$ is applied to a steel wire of cross-sectional area $0.2 \mathrm{~m}^{2}$, The tensile stress is
(A) $2.5 \times 10^{4} \mathrm{Nm}^{-2}$
(B) $1.0 \times 10^{2} \mathrm{Nm}^{-2}$

C $1.0 \times 10^{3} \mathrm{Nm}^{-2}$
(D) $2.5 \times 10^{3} \mathrm{Nm}^{-2}$

15 The small droplets of water that form on the grass in the early hours of the morning is
(A) Fog

B Haul
(D) Dew

16 What is the equivalent of 20 K in Celsius scale?
(A) $20^{\circ} \mathrm{C}$

B $293^{\circ} \mathrm{C}$

C $68^{\circ} \mathrm{C}$

D $36^{\circ} \mathrm{C}$

17 The equation $\mathrm{P}^{\mathrm{a}} \mathrm{V}^{\mathrm{b}} \mathrm{T}^{\mathrm{c}}=$ constant reduces to
Charles Law if
(A) $\mathrm{a}=1, \mathrm{~b}=1$ and $\mathrm{c}=0$
(B) $\mathrm{a}=1, \mathrm{~b}=0$ and $\mathrm{c}=-1$

C $a=0, b=1$ and $c=1$
(D) $\mathrm{a}=0, \mathrm{~b}=1$ and $\mathrm{c}=-1$

18 The quantity of heat needed to raise the temperature of a body by 1 K is the body's
(A) Heat capacity

B Internal energy
(C) Specific heat capacity
(D) Latent heat of fusion

19 The melting point of a substance is equivalent to its

B Solidification Temperature
C Liquidification Temperature
D Solidification Pressures

20 The temperature at which the water vapour present in the air is just sufficient to saturate air is
© Boiling point
B Ice point
C Saturation point
D Dew point

21 Heat transfer by convection in a liquid is due to
(A) Latent heat of vaporization of the liquid

B Increased vibration of the molecules of the liquid about theit mean position

C Variation of density of the liquid
(D) Expansion of the liquid as it is heated

22 The distance between two successive crests of a wave is 15 cm and the velocity $300 \mathrm{~ms}^{-1}$. Calculate the frequency.
(A) $2.0 \times 10^{2} \mathrm{~Hz}$
(B) $4.5 \times 10^{3} \mathrm{~Hz}$

C $2.0 \times 10^{3} \mathrm{~Hz}$
(D) $4.5 \times 10^{2} \mathrm{~Hz}$

23 A boy receives the echo of his clap reflected by a nearby hill 0.8 s later. How far is he from the hill?
(4) 528 m

B 66 m
C 136 m
D 264 m

24 An object is placed 10 m from a pinhole camera of length 25 cm . Calculate the linear magnification.
(A) 2.5×10^{2}
(B) 2.5×10^{-2}

C 2.5×10^{-1}
(D) 2.5×10^{1}

25 The focal length of a concave mirror is 2.0 cm . If an object is placed 8.0 cm from it, the image is at
(A) 2.7 m

B 2.0 m
C 2.3 m
(D) 2.5 m

26 In a compound microscope, the objective and the eye piece focal lengths are
(A) At infinity

B Long
C Short
(D) The same

27 When a telescope is in normal use, the final image is at

A Infinity
B The focus
C The radius of curvature
D The near point

28 When a negatively charged rod is brought near the cap of a charged gold leaf electroscope which has positive charges, the leaf

A Remains the same
B Collapses
C Collapses and diverges again

29 What charge is stored in a 0.1 F capacitor when a 10 V supply is connected across it?
(A) 1C

B 5C
(4 C
D 2 C

30 The maximum power transfer occur in a cell when the external resistance is

A Twice the internal resistance of the cell
B The same as the internal resistance of the cell
C Greater than the internal resistance of the cell

31 If a metal wire 4 m long and cross-sectional area
$0.8 \mathrm{~mm}^{2}$ has a resistance of 60 , find the resistivity of the wire
(A) 5.3×10^{-7}
(B) 3.0×10^{-5}
(C) 1.2×10^{-6}
(D) 3.2×10^{-6}

32 A circuit has a resistance of 200Ω. The resistance of the circuit can be reduced to 120Ω when
(B) An 80Ω resistor is conneceted to it in series

C A 150Ω resistor is connected to it in parallel
(D) A 240Ω resistor is connected to it in series

33 PHCN measures its electrical energy in
(A) W

B KWh
c Wh
D J

34 What is the best method of demagnetizing a steel bar magnet?
(A) Hammering
(B) Heating it

(C) Rough handling it

(D) Solenoid method

35 The magnitude of the angle of dip at the equator is
(A) 360°

B 0°

C 90°
(D) 180°

36 When an atom undergoes a beta decay, the atomic number of the nucleus
(A) Remains unchanged

B Decreases by one
C Increases by one
(D) Becomes zero

37 Calculate the mass of the copper deposited during electrolysis when a current of 4A passes through a copper salt for 2 hours. [Ece of Copper $\mathrm{z}=3.3 \times 10^{-7} \mathrm{kgC}^{-1}$]
(A) $2.9 \times 10^{5} \mathrm{~kg}$

B $9.5 \times 10^{-7} \mathrm{~kg}$
C $9.5 \times 10^{-3} \mathrm{~kg}$
(D) $2.9 \times 10^{4} \mathrm{~kg}$

38 Which gas produces a pink coloured light in a discharge tube?
A. Mercury
(B) Argon

C Air
(D) Neon

39 In a common emitter configuration, the output voltage is through the
(4) Resistor

B Base
C Collector
(D) Emitter

40 When ${ }_{82}^{210} \mathrm{~Pb}$ decays to ${ }_{80}^{206} \mathrm{~Pb}$, it emits

A two alpha and two beta particles
B an alpha particle
C one beta particle
(D) one alpha and one beta particle

41 What type of reaction is represented by the equation ${ }_{1}^{2} X+{ }_{1}^{2} X \rightarrow{ }_{2}^{3} Y+{ }_{0}^{1} n+$ Energy

A Ionization

B Fusion
C Fission
42. A glass bottle of initial volume $2 \times 10^{4} \mathrm{~cm}^{3}$ is
heated from $20^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. If the linear expansivity of glass is $9 \times 10^{6} \mathrm{~K}^{-1}$, the volume of the bottle at $50^{\circ} \mathrm{C}$ is
(A) $20016.2 \mathrm{~cm}^{3}$
(B) $20005.4 \mathrm{~cm}^{3}$

C $20008.1 \mathrm{~cm}^{3}$
(D) $20013.5 \mathrm{~cm}^{3}$

Answers: JAMB Past

1. C

2. C

Displacement is a vector quantity

3. A
4. D
5. A
$\mathrm{V}^{2}=\mathrm{U}^{2} \times 2 \mathrm{ax}$
$\mathrm{V}^{2}=0 \times 2(3)(24)$
$V^{2}=144$
$\mathrm{V}=\sqrt{144}$
$\mathrm{V}=12 \mathrm{~ms}^{-1}$
6. D
$\mathrm{V}_{\text {escape }}=\sqrt{2 g R}$
$\mathrm{V}_{\text {escape }}=\sqrt{2 \times 10 \times 6.4 \times 10^{6}}$
$\mathrm{V}_{\text {escape }}=\sqrt{128000000}$
$V_{\text {escape }}=11313.7085 \mathrm{mS}^{-1}$
$\mathrm{V}_{\text {escape }}=11.313 \mathrm{kmS}^{-1}$
7. C
8. B
9. D

Conditions for non-parallel coplanar forces
10. C

Kinetic Energy $=m g h$
$=20 \times 10 \times 10 \mathrm{~J}$
$=2000 \mathrm{~J}$
11. A
12. C
$\frac{M A}{V R} \times \frac{100}{1}=e f f i c i e n c y$
$\frac{L}{E} \frac{1}{V R} \times \frac{100}{1}=75$
$\frac{1000}{E} \frac{1}{4} \times \frac{100}{1}=75$
$E=\frac{250 \times 100}{75}$

$$
\mathrm{E}=333.3 \mathrm{~N}
$$

13. B
$\mathrm{VR}=800 / 200=4$
Efficiency $=\frac{M A}{V R} \times \frac{100}{1}$
Efficiency $=\frac{L}{E} \times \frac{1}{V R} \times \frac{100}{1}$
Efficiency $=\frac{800}{250} \times \frac{1}{4} \times \frac{100}{1}$
$=78.74 \%$
$=80 \%$
14. D

Stress $=\frac{\text { Force }}{\text { Area }}$
Stress $=\frac{500}{0.2}=2500$
$=2.5 \times 10^{3} \mathrm{Nm}^{-3}$
15. D
16. B
$273+20=293$
17. D
if $\mathrm{a}=0, \mathrm{~b}=1$ and $\mathrm{c}=-1$ then $\mathrm{P}^{0} \mathrm{~V}^{1} \mathrm{~T}^{-1}=\mathrm{V} / \mathrm{T}$ (Charles Law)
18. A
19. B
20. D
21. D
22. C

Wavelength $=15 \mathrm{~cm}=0.15 \mathrm{~m}$
Velocity $=300 \mathrm{~m} / \mathrm{s}$
$V=f x$
$\mathrm{F}=\mathrm{V} /$ Wavelength
F $=300 / 0.15$ Hertz
$\mathrm{F}=2 \times 10^{3} \mathrm{~Hz}$
23. C

Time for echo both ways $=0.8$
Therefore time for echo in 1 way $=0.8 / 2=0.4$
Distance $=$ Speed x time
Distance $=340 \times 0.4$

Distance $=136 \mathrm{~m}$
24. B

Linear Magnification $=\frac{\text { Length of Camera }}{\text { Distance of the Object }}$
Linear Magnification $=\frac{25}{1000}$
Linear Magnification $=2.5 \times 10^{-2}$
25. A
$\frac{1}{U}+\frac{1}{V}=\frac{1}{f}$
$\frac{1}{8}+\frac{1}{V}=\frac{1}{2}$
$V=\frac{8}{3}$

$$
V=2.7 \mathrm{~cm}
$$

26. C
27. A
28. B
29. B
$\mathrm{Q}=\mathrm{CV}=0.1 \times 10=1 \mathrm{C}$
30. B
31. C
$P=\frac{R a}{L} \Omega m$
$P=\frac{6 \times 0.8}{4} \Omega m$
$P=1.2 \times 10^{-6} \Omega m$
32. A

For parallel resistance,
$\frac{300 \times 200}{500}$
$=120 \Omega$

Therefore it is when a 300Ω resistor is connected to it in parallel
33. B
34. D
35. B
36. C
37. C

Mass $=$ ZIT kg
Mass $=3.3 \times 10^{-7} \times 4 \times 2 \times 60 \times 60 \mathrm{~kg}$
Mass $=9.5 \times 10^{-3} \mathrm{~kg}$
38. C
39. D
40. B

41. B

42. A
$\gamma=\frac{V_{2}-V_{1}}{V(\theta)}$
$3\left(9 \times 10^{4}\right)=\frac{V_{2}-2 \times 10^{4}}{2 \times 10^{4}(30)}$
$V_{2}-2 \times 10^{4}=2 \times 10^{4}(30) \times 3\left(9 \times 10^{-6}\right)$
$V_{2}=2 \times 10^{4} 2 \times 10^{4}(30) \times 3\left(9 \times 10^{-6}\right)$
$V_{2}=16.2+2 \times 10^{4}$
$\mathrm{V}_{2}=20016.2 \mathrm{~cm}^{3}$
